Separation of gold nanoparticles with a monolithic silica capillary column in liquid chromatography.
نویسندگان
چکیده
A separation system for gold nanoparticles was developed using monolithic silica capillary columns with 50 µm i.d., which were prepared via in-situ sol-gel processes. Gold nanoparticles with five different average sizes were synthesized via reduction of tetrachloroauric acid (HAuCl(4)) under different synthesis conditions, and were evaluated by UV-visible spectrophotometry, dynamic light scattering as well as transmission electron microscopy before they were separated using the developed system. The results showed that all of the gold nanoparticles had a certain size distribution, and the mean sizes obtained were 13, 17, 33, 43 and 61 nm, with σ = 2.5, 2.7, 5.2, 5.1 and 5.6 nm, respectively. Transmission electron microscopy showed that the samples with mean sizes of 13 and 17 nm were almost spherical, while larger samples were slightly non-uniform. The agglomeration of gold nanoparticles as the sample could be prevented by using a sodium dodecyl sulfate aqueous solution as the mobile phase, and gold nanoparticles were retained by adsorption on the silica surface. Separation with 8 mM sodium dodecyl sulfate as the eluent and a 1000-mm column was successful, and the separation of gold nanoparticles with 61 and 17 nm or 61 and 13 nm was demonstrated. The separation results obtained using a nonporous silica packed column as well as monolithic silica columns with or without mesopore growth were compared. It was found that separation using the mesopore-less monolithic column achieved better resolution. Through the use of a 2000-mm separation column, the mixtures of 61, 43, 17 nm and 61, 33, 13 nm could be separated.
منابع مشابه
Simultaneous analysis of nanoparticles and small molecules by high-performance liquid chromatography using a silica monolithic column.
A high-performance liquid chromatography method using a commercially available silica monolithic column for the simultaneous analysis of nanoparticles and small molecules was developed. The method uses the micrometer-sized flow-through pores and nanometer-sized mesopores of the monolithic column for separation: first, size separation of nanoparticles was performed by the micrometer-sized pores ...
متن کاملSeparation of polyprenol and dolichol by monolithic silica capillary column chromatography.
We attempted an analysis of naturally occurring polyprenol and dolichol using a monolithic silica capillary column in HPLC. First, the separation of the polyprenol mixture alone was performed using a 250 x 0.2 mm inner diameter (ID) octadecylsilyl (ODS)-monolithic silica capillary column. The resolution of the separation between octadecaprenol (prenol 18) and nonadecaprenol (prenol 19) exceeded...
متن کاملMonolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics.
Application of C18 monolithic silica capillary columns in HPLC coupled to ion trap mass spectrometry detection was studied for probing the metabolome of the model plant Arabidopsis thaliana. It could be shown that the use of a long capillary column is an easy and effective approach to reduce ionization suppression by enhanced chromatographic resolution. Several hundred peaks could be detected u...
متن کاملOctadecylated silica monolith capillary column with integrated nanoelectrospray ionization emitter for highly efficient proteome analysis.
An improved strategy for the preparation of octadecylated silica monolith capillary column with high homogeneity was proposed. Column performance was evaluated by nanoscale HPLC. The design for constructing an integrated nanoelectrospray emitter on the octadecylated silica monolith capillary column was first introduced. In comparison with the separated configuration where the emitter is connect...
متن کاملFacile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "one-pot" approach for hydrophilic-interaction liquid chromatography (HILIC).
A simple single-step thermal-treatment "one-pot" approach for the preparation of organic-silica hybrid capillary monolithic columns is described. In this improved method, the cross-linker vinyltrimethoxysilane (VTMS) was replaced by 3-methacryloxypropyltrimethoxysilane (γ-MAPS), which is more active in polymerization reactions, and only one thermal treatment step was required in the preparation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2012